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Diabetic neuronal damage results from hyperglycemia followed by increased formation of advanced glycosylation
end products (AGEs), which leads to neurodegeneration, although the molecular mechanisms are still not well
understood. Metformin, one of the most widely used anti-diabetic drugs, exerts its effects in part by activation
of AMP-activated protein kinase (AMPK). AMPK is a critical evolutionarily conserved enzyme expressed in the
liver, skeletal muscle and brain, and promotes cellular energy homeostasis and biogenesis by regulating several
metabolic processes. While the mechanisms of AMPK as a metabolic regulator are well established, the neuronal
role for AMPK is still unknown. In the present study, human neural stem cells (hNSCs) exposed to AGEs had sig-
nificantly reduced cell viability, which correlatedwith decreased AMPK andmitochondria associated gene/protein
(PGC1α, NRF-1 and Tfam) expressions, as well as increased activation of caspase 3 and 9 activities. Metformin
prevented AGEs induced cytochrome c release from mitochondria into cytosol in the hNSCs. Co-treatment with
metformin significantly abrogated the AGE-mediated effects in hNSCs. Metformin also significantly rescued
hNSCs fromAGE-mediatedmitochondrial deficiency (lowerATP, D-loop level,mitochondrialmass,maximal respi-
ratory function, COX activity, and mitochondrial membrane potential). Furthermore, co-treatment of hNSCs with
metformin significantly blocked AGE-mediated reductions in the expression levels of several neuroprotective
genes (PPARγ, Bcl-2 and CREB). These findings extend our understanding of the molecular mechanisms of both
AGE-induced neuronal toxicity, and AMPK-dependent neuroprotection by metformin. This study further suggests
that AMPK may be a potential therapeutic target for treating diabetic neurodegeneration.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Type 2 diabetes mellitus (DM) is one of the most common metabolic
and chronic diseases worldwide, with a prevalence that increases with
age and obesity [1]. DM is a disorder that impairs several organ systems,
including the brain, and is implicated as a risk factor for Alzheimer's
disease (AD) [2–4]. Patients with DM present with cognitive deficits
associated with reduced performance on multiple domains of cognitive
function [5], as well as structural brain changes [6,7]. Magnetic
Fu Jen Catholic University, New
86 2 29052193.
Resonance Imaging (MRI) has also demonstrated that subjects with DM
have hippocampal and amygdala atrophy relative to control subjects [8].
In addition, population-based studies suggest a link between DM and
AD, with the incidence of AD as much as two to five times higher in dia-
betic patients [5,6]. However, the underlying pathological mechanisms
that may associate DM and neurodegeneration are not yet well defined.

Chronic hyperglycemia of the brain may be one of the critical factors
involved in neuronal impairment in people with irregular glucose
metabolism [9,10]. Several studies show that hyperglycemia leads to
slow progressive structural and functional abnormalities in the brain
[7,11,12]. Hyperglycemia is accompanied by accelerated formation of
AGEs, which accumulate in various tissues during normal aging and at
an increased rate in DM patients [13]. A recent study reported that
AGEs play a critical role in the pathogenesis of diabetic complications
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and neurodegenerative disorders, including AD [14]. Furthermore,
in vitro dose-dependent AGE-mediated suppression of the proliferation
and differentiation responses of rat neural stem cells (NSCs) [15], sug-
gests that abnormal blood glucose may be similarly toxic in the brain.

Metformin is a widely prescribed oral anti-hyperglycemic drug for
the clinical treatment of DM [16,17]. Metformin exerts its protective
anti-diabetic effects in part by activating AMP-activated protein kinase
(AMPK) [18–20] and, interestingly, also inhibits glycation reactions [16,
17,21]. AMPK plays a role in regulating glucose and lipid metabolism,
senses metabolic stress and integrates diverse physiological signals to
restore energy balance [22–24]. AMPK also serves as a regulator of cell
survival or death in response to pathological hypoxia, osmotic and oxi-
dative stress [25–28]. Therefore, AMPK plays a key role in intracellular
metabolism and is an attractive therapeutic target, especially for energy
related diseases [29,30]. AMPK was previously implicated in aging, AD
and Parkinson's disease [31–34]. Most importantly, AMPK has a crucial
role in hyperglycemia associated with Type 2 DM, neuroprotection,
anti-inflammation and alteration of oxidative stress [35,36].

The potential relationship between AGEs and AMPK signaling in
diabetic neuropathy has not been studied extensively. In this study,
hNSCs treated with AGEs, with or without metformin, were examined
for changes in cell death and mitochondrial dysfunction. Our findings
provide important new evidence of the mechanisms by which AGEs
mediate hNSC degeneration, and metformin confers AMPK-dependent
neuroprotection. Together, these data support AMPK as a potential
therapeutic drug target to treat neurodegeneration in diabetic patients.

2. Materials and methods

2.1. Cell culture

GIBCO® human neural stem cells (hNSCs) were originally obtained
from the National Institutes of Health (NIH) approved H9 (WA09)
human embryonic stem cells. Complete StemPro® NSC serum free me-
dium (SFM) was used for optimal growth and expansion of GIBCO®
hNSCs, and kept the hNSCs undifferentiated as described previously
[37]. Complete StemPro® NSC SFM consists of KnockOut™ D-MEM/F-
12 with 2% StemPro® Neural Supplement, 20 ng/ml of EGF, 20 ng/ml
of bFGF, and 2 mM of GlutaMAX™-I.

The day before treatment, cells were seeded onto a 35-mm dish at a
density of 2 ×105 cells perwell. For treatment, cellswere grown inwells
for 24 h and then exposed to AGEs (0.5 mg/ml) for 24 h in NSC SFM.
Next, cells were washed with PBS, followed by one more wash with
NSC SFM, andwere culturedwith the indicated reagents (1mMmetfor-
min or 10 μM Compound C) for an additional 48 h in NSC SFM. Experi-
mental groups to be conducted are listed below. hNSCs with no
treatment were then cultured in NSC SFM for 72 h; hNSCs were treated
with AGEs (0.5 mg/ml) for 24 h, then cultured in NSC SFM for another
48 h; hNSCs were treated with AGEs (0.5 mg/ml) for 24 h, then treated
with 1 mMmetformin for another 48 h; hNSCs were treated with AGEs
(0.5 mg/ml) for 24 h, then treated with 1 mM metformin and 10 μM
Compound C for another 48 h.

2.2. Evaluation of cell growth

Cell viability was assayed byMTT (3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazoliumbromide) (Sigma, Austin, TX, USA) absorbance and
cell count as reported elsewhere [38]. Synchronized hNSCswere treated
with AGEs (0.5 mg/ml), AMPK agonist metformin (1 mM) or AMPK
pharmacological inhibitor Compound C (10 μM) for 3 days as indicated.
MTT absorbance in solubilized cells was measured at 570 nm using an
EZ Read 400 ELISA Reader (Biochrom, Holliston, USA). The cell growth
rate was expressed as a percentage of values obtained in vehicle control
groups. Metformin and Compound C were purchased from Cayman
Chemicals (Ann Arbor, MI, USA). AGE is an abbreviation of Advanced
Glycation End product (AGE)-BSA obtained from BioVision (Milpitas,
CA, USA). Aminoguanidine was obtained from Sigma (Saint Louis, MO,
USA).

2.3. Caspase activity assay

Caspase activity assay was carried out using caspase-3-like (DEVD-
AFC) and caspase-9-like (LEHD-FMK) Fluorometric Protease Assay Kits
(Chemicon, Michigan USA) as reported elsewhere [39]. Briefly, cells
were homogenized in a lysis buffer for 10min. The cellular lysate (stan-
dardized to protein concentration)was incubatedwith an equal volume
of 2× reaction buffer (with 0.01Mof dithiothreitol) for an additional 1 h
at 37 °C and either caspase-3 (DEVD-AFC) or caspase-9 (LEHD-FMK)
substrate at a final concentration of 50 μM. The fluorescence was mea-
sured by a microplate reader with an excitation filter of 390 ± 22 nm
and an emission filter of 510 ± 10 nm.

2.4. Western blot assays

Equal amounts of protein were separated by sodium dodecylsulfate
polyacrylamide gel electrophoresis (SDS-PAGE) using 10% polyacryl-
amide gels. The resolved proteins were electroblotted onto Immobilon
polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA)
for Western blot analyses as reported elsewhere [40]. Primary antibod-
ies of cytochrome c (1:1000; GeneTex, Inc, Irvine, CA), voltage-
dependent anion channel (1:2000; GeneTex), AMPK (1:2000; Cell Sig-
naling Technology, Inc., Danvers, MA, USA), phosphorylated (Thr172)
AMPK (1:1000; Cell Signaling Technology), PGC1α (1:2000; GeneTex),
phosphorylated PGC1α (1:1000; GeneTex), NRF-1 (1:2000; GeneTex),
Tfam (1:2000; GeneTex), and actin (1:3000; GeneTex)were utilized ac-
cording to manufacturer's instructions.

2.5. Measurements of cytochrome c release

For measurement of cytochrome c release, mitochondria and cyto-
solic fractions were prepared from hNSCs. Briefly, cells were washed
with cold PBS and resuspended in ice-cold buffer (10 mM Hepes,
1 mM MgCl2, 10 mM KCl, 1 mM dithiothreitol, 1 mM Na3VO4, 10 mM
NaF, 1 μM okadaic acid, 0.5% Nonidet P-40 and protease inhibitor-com-
plete cocktail). After 30 min of incubation on ice, cells were homoge-
nized (Dounce, 20 strokes) in buffer. Homogenates were then
centrifuged at 650 g for 5 min at 4 °C, and the supernatants were re-
centrifuged at 9000 g for 30min at 4 °C to collect themitochondrial frac-
tion. The supernatants were again centrifuged at 95,000 g for 1 h at 4 °C,
and the final supernatant was used as a cytosolic fraction. Cytochrome c
levels in the mitochondrial and cytosolic fraction were determined by
Western blot analysis.

2.6. RNA isolation and quantitative real-time polymerase chain reaction
(Q-PCR)

Total RNA was isolated, and reverse-transcribed into cDNA as de-
scribed previously [41]. A real-time quantitative PCR was performed
using a TaqMan kit (PE Applied Biosystems, Foster City, CA, USA) on a
StepOne quantitative PCR machine (PE Applied Biosystems) using
heat-activated TaqDNA polymerase (Amplitaq Gold; PE Applied
Biosystems). The sequences of primers were as follows: AMPK (5′-
GGGTGAAGA-TCGGACACTACGT-3′ and 5′-TTGATGTTCAATCTTCACTT
TG-3′), PGC1α (5′-TGAGAGGGCCAAGCAAAG-3′ and 5′-ATAAATCACA
CGGCGCTCTT-3′), NRF1 (5′-CCATCTGGTGGCCTGAAG-3′ and 5′-GTGC
CTGGGTCCATGAAA-3′), Tfam (5′-GAACAACTACCCATATTTAAAGCTCA-
3′ and 5′-GAATCAGGAAGT-TCCCTCCA-3′), D-loop (5′-GGTTCTTACTTC
AGGGCCATCA-3′ and 5′-GATT-AGACCCGTTACCATCGAGAT-3′), PPARγ
(5′-AAAGAAGCCGACACTAAACC-3′ and 5′-CTTCCATTACGGAGAGATCC-
3′), Bcl-2 (5′-ACTTTGCAGAGATGTCC-AGT-3′ and 5′-CGGTTCAGGTAC
TCAGTCAT-3′), CREB (5′-CCAAGCTTATGG-ATCCTCCTGGAGAGAAGA
TGG-3′ and 5′-GCCTCGAGAAGCACATTGACGCT-CCTGAC-3′), RAGE (5′-
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CACACTGCAGTCGGAGCTAA-3′ and 5′-GCTACTGCT-CCACCTTCTGG-3′),
and GAPDH (5′-TGCACCACCAACTGCTTAGC-3′ and 5′-GGCATGGACT
GTGGTCATGAG-3′). Independent reverse-transcription PCRs were
performed as described previously [41]. Relative target gene transcript
levels were calculated using standard curves of serial RNA dilutions,
and normalized to GAPDH levels of the same RNA sample.

2.7. Measurement of intracellular ATP concentration

To determine ATP levels, hNSCs were collected in a lysis buffer
(0.1 M Tris, 0.04 M EDTA, pH 7.2), and boiled for 3 min. Samples
were then centrifuged (112 g for 5 min) and supernatant protein
concentrations were determined using a Bradford assay (Promega,
Madison, WI, USA). The supernatants were assessed using a luciferin/
luciferase assay as described previously [38]. Sample ATP levels were
normalized to protein content. The reaction buffer for this assay
contained 60 μM of luciferin, 0.06 μg/ml of luciferase, 0.01 M of magne-
sium acetate, 0.05% of bovine serum albumin, and 0.2 M of Tris
(pH 7.5).

2.8. Mitochondrial mass

The fluorescent probe Mitotracker Green™ dye (MitoGreen,
Invitrogen, Carlsbad, CA, USA) which binds mitochondrial membrane
lipids regardless of mitochondrial membrane potential or oxidant sta-
tus, was used to determine the mass of mitochondria as previously de-
scribed [39]. Briefly, cells were loaded with 0.2 μM/ml of Mitotracker
Green™ dye in the medium for 30 min at 37 °C. Fluorescence measure-
ments were made with excitation at 490 nm and emission at 516 nm
using fluorescence microscopy (OPTIMA G-303), and reported as the
mean of fluorescent signals.

2.9. Mitochondrial functional parameters

For mitochondrial respiratory studies cells were grown on a 10 cm
plate, treated with AGEs (0.5 mg/ml) for 24 h, then treated with the in-
dicated reagents (1 Mm metformin or 10 μM Compound C) for another
48 h, then trypsinized, and suspended in 0.5ml ofmitochondrial isolated
buffer. Respiratory measurements of mitochondria were isolated using
the mitochondria isolation kit utilized according to manufacturer's in-
structions (Thermo Fisher Scientific, Waltham, USA). 50 μg of mitochon-
dria were suspended in a sealed and continually stirred at 37 °C
containing 0.3 ml of respiration buffer (100 mM KCl, 2 mM MgCl2,
4 mM KH2PO4, 10 mM pyruvate, 5 mM malate, 250 μM EGTA, 10 mM
HEPES). Themaximal respiratory rate was gained following the addition
of 10 μM FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone).
The respiratory function of isolated mitochondria (0.2 mg/ml final
concentration) was measured using a miniature Clark-type oxygen
electrode (MT200 Mitocell Miniature Respirometer, Hamden, CT,
USA).

The cytochrome oxidase (COX) activity was measured using the
assay kit from Sigma (St. Louis, USA) using isolated mitochondrial frac-
tions from the isolation kit (Thermo Fisher Scientific) for hNSCs. Themi-
tochondrial fraction (2 μg) was added to 1 ml of the reaction solution,
then assayed with the COX activity assay; reactions were set up follow-
ing the procedures provided by the manufacturer. The absorbance
Fig. 1. Metformin rescues the AGE-mediated decrease in hNSC viability via the AMPK
pathway. (A) hNSCs were treated with AGEs (0.5 mg/ml) for 24 h, then treated with the
indicated reagents (1 mM metformin or 10 μM Compound C) for another 48 h, and cell
viability was detected by MTT assay. All reactions were run in triplicate from each inde-
pendent experiment. Value A is expressed as a percentage of the indicated transcript in
CON and is presented as the mean ± SEM values from three independent experiments.
(B, C) Caspase activities were detected by a fluorometric protease assay using substrates
for caspase-3-like (DEVD-AFC) and caspase-9-like (LEHD-FMK). All reactions were run
in triplicate from each independent experiment. Values B and C are expressed as the
mean ± SEM values from three independent experiments. a Specific comparison to the
indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).
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readings were detected by a spectrophotometer at 550 nm and COX ac-
tivity was measured as unit/mg of mitochondrial protein.
The measurement of mitochondrial membrane potential was de-
tected using the JC-1 dye from Life Technologies (Waltham, USA) for
hNSCs. Briefly, cells were treated with 1 μM JC-1 for 30 min in Earle's
balanced salt solution (EBSS) at 37 °C. The cells were then washed
three times in EBSS before fluorescence values were detected. The fluo-
rescence was calculated by a microplate reader with an excitation filter
of 530 ± 25 nm and an emission filter of 590 ± 30 nm.

2.10. Cell transfection

One day before transfection, hNSCs were seeded onto a 35-mmdish
at a density of 2 × 105 cells per well. Cells were transfectedwith 1mg of
PGC1α siRNA (Human sc-38884, Santa Cruz Biotechnology) using Lipo-
fectamine RNAiMAX (Invitrogen) in medium for 24 h, and then treated
with the desired reagent for another 48 h as reported elsewhere [38].
Experimental groups to be conducted are listed below. hNSCs with no
treatment were then cultured in NSC SFM for 72 h; hNSCs were treated
with AGEs (0.5 mg/ml) for 24 h, then cultured in NSC SFM for another
48 h; hNSCs were treated with AGEs (0.5 mg/ml) for 24 h, then treated
with 1 mM metformin for another 48 h; hNSCs were transfected with
PGC1α siRNA and treated with AGEs (0.5 mg/ml) for 24 h, then treated
with 1 mM metformin for another 48 h.

2.11. Statistical analysis

All reactions were run in triplicate from each independent experi-
ment. All datawere expressed asmeans± SEM from three independent
experiments. To establish significance, data were subjected to unpaired
one-way ANOVA using the Sigma Stat 3.5 software statistical package
(Systat SigmaStat V3.5.0.54 Software; San Jose, California, USA). The cri-
terion for significance was set at p b 0.001. Differences between groups
were assessed with Student's t tests or one-way analysis of variance
(one-way ANOVA) as indicated.

3. Results

3.1. Metformin rescued cell viability in hNSCs treated with AGEs via the
AMPK pathway

The effects of AGEs on cell viability and caspase 3/9 (amarker of cas-
pase cascade activation) activity in hNSCs were initially assessed. Com-
pared to vehicle controls, hNSCs treated with AGEs (0.5 mg/ml) for 72 h
had significantly reduced cell viability (p b 0.001) (Fig. 1A). In addition,
hNSC caspase 3 and 9 activities, detected after AGE (0.5 mg/ml) treat-
ment for 72 h, were significantly increased 2-fold compared to their re-
spective controls (p b 0.001) (Fig. 1B, C). Furthermore, treatment with
an AMPK agonist (metformin) significantly (p b 0.001) normalized
both cell viability (Fig. 1A) and caspase 3/9 activities (Fig. 1B, C),
although this protective effect was blocked by co-treatment with an an-
tagonist of AMPK (Compound C). To test the toxic effects of internal
controls (metformin and Compound C, alone), we respectively treated
Fig. 2. Effects of RAGE and aminoguanidine on hNSCs. (A) hNSCs were treated with AGEs
(0.5mg/ml) for 24 h, then treatedwith the indicated reagents (1mMmetformin or 10 μM
Compound C) for another 48h. RAGE transcript in the indicatedhNSCswas analyzedusing
the Q-PCR technique. RNA of the indicated hNSCs was collected and reverse-transcribed
into cDNA. Q-PCR technique of the indicated gene was performed and normalized to
that of GAPDH. (B, C) hNSCs were treated with AGEs (0.5 mg/ml) for 24 h, then treated
with the indicated reagents (20 μM aminoguanidine or 1 mM metformin) for another
48 h. (B) Cell viability was detected by MTT assay. (C) Caspase activities were detected
by a fluorometric protease assay using substrates for caspase-3-like (DEVD-AFC). All
reactions were run in triplicate from each independent experiment. Values A, B and C
are expressed as a percentage of the indicated transcript in CON and are presented as
the mean ± SEM values from three independent experiments. a Specific comparison to
the indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).
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themwithmetformin or Compound C in hNSCs, and thenmeasured the
level of cell viability, caspase 3 and 9.We found that hNSCs treatedwith
metformin or Compound C for 72 h showed no effect on the level of cell
viability, caspase 3 and caspase 9 (Fig. 1).

Several results of studies suggest that AGE receptors (RAGE) play
important roles in the pathogenesis of diabetic neurodegeneration
[42–44]. To verify whether AGEs induce the neurotoxicity through
RAGE, we first measured the level of RAGE after AGE treatment. Consis-
tentwith the effect of AGEs on the level of RAGE [45], our results suggest
that treatment by metformin suppressed the AGE-induced upregulation
of RAGE mRNA levels in hNSCs, which were blocked by Compound C
(Fig. 2A). To explore the roles of RAGE, we treatedwith aminoguanidine,
an inhibitor of AGE formation, and that blocked the specific RAGE
[46–48]. We found that aminoguanidine treatment improved the level
of cell viability (Fig. 2B) and decreased caspase 3 activity (Fig. 2C) in
hNSCswith AGEs. Interestingly,we also display that combined treatment
(aminoguanidine andmetformin) significantly normalized both cell via-
bility and caspase 3 in the hNSCs with AGEs. These data suggest that
aminoguanidine and metformin may mediate the AGE–RAGE axis in-
duced toxic effects of neural impairments.

Release of cytochrome c frommitochondria is one of the critical ini-
tial steps in the causation of the apoptosis including activation of cas-
pase 9 [49]. To test whether the effect of caspase in AGE induced cell
death needs cytochrome c, hNSCs were treated with AGEs. The results
exhibited in Fig. 3 distinctly demonstrate that previous to AGE treat-
ment, the mass of cytochrome c is localized in the mitochondria and
scarcely discoverable levels were detected in the cytosol. In contrast, in-
cubation of cells to AGEs affected release of cytochrome c from the
mitochondria into the cytosol (Fig. 3). Importantly, treatmentwithmet-
formin significantly prevented cytochrome c from the mitochondria
into the cytosol which was blocked by Compound C.
Fig. 4. Co-treatment withmetformin restores AMPK expression in the AGE-treated hNSCs.
hNSCs were treated with AGEs (0.5 mg/ml) for 24 h, then treated with the indicated
reagents (1 mM metformin or 10 μM Compound C) for another 48 h. (A) The AMPK
transcripts in the indicated hNSCs were analyzed using the Q-PCR technique. RNA of the
indicated hNSCs was collected and reverse-transcribed into cDNA. Q-PCR analysis of the
indicated genes was performed and normalized to that of GAPDH. (B) Lysates (20 μg)
were collected from the indicated treatment group, and subjected to a Western blot
analysis. Levels of AMPK and p-AMPK protein were normalized with the corresponding
internal control (actin), compared with those in CON, shown at the bottom of the corre-
sponding column. All reactions were run in triplicate from each independent experiment.
Values A and B are expressed as a percentage of the indicated transcript in CON and are
presented as the mean ± SEM values from three independent experiments. a Specific
comparison to the indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).

Fig. 3. Metformin prevented AGE induced cytochrome c release from mitochondria into
cytosol in the hNSCs. hNSCs were treated with AGEs (0.5 mg/ml) for 24 h, then treated
with the indicated reagents (1 mM metformin or 10 μM Compound C) for another 48 h.
Lysates (20 μg) were collected from the indicated treatment group, and subjected to a
Western blot analysis. Levels of mitochondrial cytochrome c protein were normalized
with the corresponding internal control (voltage-dependent anion channel; VDAC),
compared with those in CON, shown at the bottom of the corresponding column. Levels
of cytosolic cytochrome c protein were normalized with the corresponding internal
control (actin), compared with those in CON, shown at the bottom of the corresponding
column. All reactions were run in triplicate from each independent experiment. Values
are expressed as a percentage of the indicated transcript in CON and are presented as
the mean ± SEM values from three independent experiments. a Specific comparison to
the indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).
3.2. Metformin rescued AMPK, PGC1α and downstream expression levels
suppressed in hNSCs treated with AGEs

Both the transcript and protein levels of AMPK were significantly
reduced in hNSCs treated with AGEs compared to vehicle controls
(p b 0.001) (Fig. 4). In contrast, the addition of metformin signifi-
cantly enhanced AMPK expression, but this rescue was blocked in
the presence of Compound C (Fig. 4). It has been demonstrated
that AMPK activation, through the phosphorylation at Thr-172,



Fig. 6.Metformin enhanced the levels of mitochondrial proteins in the hNSCs treatedwith
AGEs. hNSCswere treatedwith AGEs (0.5mg/ml) for 24 h, then treatedwith the indicated
reagents (1mMmetformin or 10 μMCompound C) for another 48 h. Lysates (20 μg)were
collected from the indicated treatment group, and subjected to a western blot analysis.
Levels of PGC1α, p-PGC1α, NRF1, and Tfam proteins were normalized with the
corresponding internal control (actin), comparedwith those in CON, shown at the bottom
of the corresponding column. All reactions were run in triplicate from each independent
experiment. Values are expressed as a percentage of the indicated transcript in CON and
are presented as the mean ± SEM values from three independent experiments. a Specific
comparison to the indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).
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promotes diverse physiological signals which have been shown to
be involved in protective actions [50–52]. In this study we tested
whether the AMPK phosphorylation at Thr-172 down-regulation
occurring in hNSCs could be in part responsible for the effects of
AGEs. Fig. 4B exhibited that treatment with metformin significantly
enhanced the protein phosphorylation levels of AMPK at Thr-172,
which were blocked by Compound C.

Interestingly, the mRNA transcripts of PPAR coactivator-1α
(PGC1α), nuclear respiratory factor-1 (NRF-1), and mitochondrial
transcription factor A (Tfam) were significantly decreased by
more than 50% in AGE-treated hNSCs compared to respective con-
trols (p b 0.001) (Fig. 5). Co-treatment with metformin significant-
ly enhanced PGC1α, NRF-1, and Tfam mRNA levels, which were
blocked by the presence of Compound C (Fig. 5). To further evaluate
Fig. 5. Metformin improved the expression of mitochondrial genes in the hNSCs treated
with AGEs. hNSCs were treated with AGEs (0.5 mg/ml) for 24 h, then treated with the in-
dicated reagents (1 mM metformin or 10 μM Compound C) for another 48 h. The PGC1α
(A), NRF1 (B) and Tfam (C) transcripts in the indicated hNSCs were analyzed using the
Q-PCR technique. RNA of the indicated hNSCs was collected and reverse- transcribed
into cDNA. Q-PCR technique of the indicated gene was performed and normalized to
that of GAPDH. All reactions were run in triplicate from each independent experiment.
Values A, B and C are expressed as percentages of the indicated transcript in CON and
are presented as the mean ± SEM values from three independent experiments. a Specific
comparison to the indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).
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the protein levels of PGC1α, p-PGC1α, NRF-1, and Tfam in hNSCs,
we analyzed the expression by Western blot assay. We found that
metformin increased PGC1α, p-PGC1α, NRF-1, and Tfam expres-
sion in the hNSCs with AGEs, which was blocked by Compound C
(Fig. 6).

Indeed, stimulation of AMPK directly phosphorylates the PGC1α
protein, which in turn induces genes associated to mitochondrial
function and biogenesis [53,54]. Fig. 6 exhibited that treatment with
metformin significantly enhanced the protein phosphorylation levels
of PGC1α, which were blocked by Compound C. In addition, PGC1α
has also been demonstrated in mitochondrial function through its ca-
pacity to control a number of genes such as NRF1 and Tfam [38,55].
Fig. 7 illustrated that treatment with metformin significantly enhanced
Fig. 7. Effects of metformin on the hNSCs were blocked by PGC1α siRNA. hNSCs were
transfected with 1 mg of PGC1α siRNA using Lipofectamine RNAiMAX for 24 h, and then
treated with the indicated reagent (1 mM metformin) for another 48 h. The NRF1
(A) and Tfam (B) transcripts in the indicated hNSCs were analyzed using the Q-PCR
technique. RNA of the indicated hNSCs was collected and reverse- transcribed into
cDNA. Q-PCR technique of the indicated gene was performed and normalized to that of
GAPDH. All reactions were run in triplicate from each independent experiment. Values A
and B are expressed as percentages of the indicated transcript in CON and are presented
as the mean ± SEM values from three independent experiments. Specific comparison to
the indicated hNSCs with AGEs is denoted as ‘a’ (p b 0.001; one-way ANOVA). Specific
comparison to the indicated hNSCs with AGEs, metformin and PGC1α siRNA is denoted
as ‘b’ (p b 0.001; one-way ANOVA).
the transcript levels of NRF1 and Tfam, which were blocked by PGC1α
siRNA transfection.

3.3. Metformin enhanced ATP levels, D-loop, mitochondrial mass and
mitochondrial functional parameters in AGE-treated hNSCs

To analyze the consequence of potential mitochondrial biogenesis,
hNSCs were evaluated using an ATP assay. ATP levels in AGE-treated
hNSCs were significantly decreased compared to vehicle controls
(p b 0.001). However, co-treatment with metformin significantly re-
stored ATP levels to almost normal levels, but only in the absence of
Compound C (Fig. 8A). To further evaluate mitochondrial DNA
Fig. 8. Metformin enhanced ATP and D-loop levels in AGE treated hNSCs. hNSCs were
treated with AGEs (0.5 mg/ml) for 24 h, then treated with the indicated reagents (1 mM
metformin or 10 μM Compound C) for another 48 h. (A) Lysates harvested from the indi-
cated treatment were evaluated by the ATP assay. Data are expressed as themean± SEM
values from three independent experiments. (B) The D-loopmRNA levels in the indicated
hNSCswere analyzed using Q-PCR. RNA of the indicated hNSCswas collected and reverse-
transcribed into cDNA. Q-PCR technique of the indicated gene was performed and
normalized to that of GAPDH. All reactions were run in triplicate from each independent
experiment. Values are expressed as percentages of the indicated transcript in CON and
are presented as the mean ± SEM values from three independent experiments. a Specific
comparison to the indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).
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(mtDNA) copy number in hNSCs, D-loop mRNA expression [38] was ex-
amined byQPCR. Similar to thefindings for ATP, D-loop expression levels
were significantly decreased inAGE-treated hNSCs (p b 0.001) compared
to vehicle controls; however, metformin co-treatment restored levels in
hNSCs to almost normal, except when in the presence of the AMPK an-
tagonist Compound C (Fig. 8B). To test the effects of internal controls
(metformin and Compound C, alone), we respectively treated them
with metformin or Compound C in hNSCs, and then measured the level
of ATP and D-loop expression. We found that hNSCs treated with
metformin or Compound C for 72 h showed no effect on the level of
ATP and D-loop expression (Fig. 8).

Stimulation of AMPK promotes mitochondrial biogenesis and re-
modeling via the induction of PGC1α and its downstream target genes
[55–57]. Therefore, we evaluated whether metformin regulated mito-
chondrial capacity via an AMPK-dependent pathway in AGE-treated
hNSCs. The mitochondrial biogenesis assay using MitoGreen [38,39],
and reflective of mitochondrial mass, was used to assess the effects of
AGE treatment on hNSCs. As shown in representative images (Fig. 9A),
and when quantitated by mean fluorescence (Fig. 9B), these data
show thst treatment with AGEs significantly decreases hNSCmitochon-
drial mass by almost 60% compared to vehicle controls (p b 0.001), and
that co-treatment with metformin significantly abrogated this effect in
the absence of Compound C.
Fig. 9. Metformin increased mitochondrial mass in AGE-treated hNSCs. hNSCs were treat
metformin or 10 μM Compound C) for another 48 h. (A) hNSCs were collected to determ
bar: 100 μm. (B) The expression levels of mitochondrial mass were normalized to those of
Values are expressed as a percentage of the indicated transcript in CON and are presented a
to the indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).
To further verify the role of AGEs inmitochondrial functional param-
eters, we used assays of maximal respiratory function, COX activity, and
mitochondrial membrane potential. We found that mitochondrial abili-
ty in hNSCs with metformin attenuated the AGE-induced reduction of
maximal respiratory function (Fig. 10A), COX activity (Fig. 10B), andmi-
tochondrial membrane potential (Fig. 10C), which were blocked by
Compound C. These mitochondrial functional parameters confirm that
metformin elevated mitochondrial function in the hNSCs with AGEs
via AMPK.
3.4. Metformin increases neuroprotective gene expression levels in AGE-
treated hNSCs

To evaluate whether activation of AMPK in hNSCs treatedwith AGEs
exerts a neuroprotective effect, the expression levels of several genes
(PPARγ, Bcl-2 and CREB) that are implicated as important in hNSCs sur-
vival were assessed. This is of particular interest because these genes
(PPARγ, Bcl-2 and CREB) are downstream targets of AMPK [58–62].
ThemRNA transcript levels of PPARγ, Bcl-2 and CREBwere significantly
lower in AGE-treated hNSCs compared to respective vehicle controls
(p b 0.001) (Fig. 11). Co-treatment with metformin significantly in-
creased transcript levels in hNSCs compared to AGE-treatment alone,
ed with AGEs (0.5 mg/ml) for 24 h, then treated with the indicated reagents (1 mM
ine the level of mitochondrial mass using Mitotracker Green™ dye (green). Scale

cell numbers. All reactions were run in triplicate from each independent experiment.
s the mean± SEM values from three independent experiments. a Specific comparison



728 M.-M. Chung et al. / Biochimica et Biophysica Acta 1852 (2015) 720–731
but this protective effect was absent in the presence of Compound C
(Fig. 11).
4. Discussion

The neuroprotective effects of AMPK activation following AGE-
treatment of hNSCs have not been explored previously. In the present
study, it is clearly shown that AGEs enhance hNSC cell death and mito-
chondrial dysfunction via downregulation of AMPK and its downstream
signaling pathways. More interestingly, the gold standard AMPK activa-
tormetformin significantly protected hNSCs from thedeleterious effects
induced by AGE exposure in an AMPK-dependent fashion. Because sev-
eral reports indicated that AGEs decrease mitochondrial capacity [63,
64], andWareski and colleagues (2009) showed that AMPK stimulation,
through the induction of the PGC1α, promotes mitochondrial function
[65], a selected group of gene signaling pathways that may be relevant
to these effects was also evaluated. Metformin also enhanced AMPK,
PGC1α, NRF-1 and Tfam expressions in AGE-treated hNSCs, which
may contribute to the observed elevation in mitochondrial functions.
Moreover, metformin enhanced expression of neuroprotective
genes may assist in protecting hNSCs against AGE-induced toxicity.
Collectively, these findings strongly implicate AMPK targeting by
AGEs in the pathogenesis of neurodegenerative diseases in DM
patients, and unveil the first evidence of AMPK expression and
signaling as critical to regulate mitochondrial defense systems in
hNSCs. These data also raise the possibility that metformin may be a
beneficial therapeutic intervention to override AGE-mediated neurode-
generation in diabetic patients.

Humans with poorly managed DM show hyperglycemia, follow-
ed by an accelerated rate of AGE formation and accumulation. AGEs
in several tissues are known to increase during aging and DM [13].
One study has also demonstrated that AGEs play major roles in the
pathogenesis of diabetic neuropathy and neurodegenerative disor-
ders [14]. Importantly, further study may be needed in researching
the effects of AGEs on neurodegeneration, and the detailed mecha-
nisms contributing to their pathogenesis. Neuronal apoptosis is ob-
served in the hippocampus of diabetic experimental models in rats
[66]. Hence, the studies here further extend our understanding of
the chief role of AGE formation and its accumulation in the impair-
ment of cell viability, and support increased AGE levels as risk fac-
tors of neuronal impairment in diabetic patients. This study
provided direct evidence for the protection of the role of AMPK in
the hNSCs with AGEs. Our findings are consistent with other stud-
ies showing that metformin treatment, in an AMPK-dependent
manner, similarly protected cortical neurons from ethanol-induced
apoptotic neurodegeneration [67], and etoposide-induced cell death
[68].

Stimulation of the AMPK pathway promoted hNSC proliferation,
whereas inhibition of AMPKwas correlatedwith inhibition of hNSC pro-
liferation followed by cellular apoptosis via the caspase cascade. Here,
AGE treatment was shown to directly impact on the expression of acti-
vated caspases 3 and 9 in hNSCs.

These are the first such studies to unveil the AMPK-dependent neu-
roprotective effects of co-treatment of metformin in hNSCs exposed to
AGEs, and the underlyingmechanisms. Kuhla and colleagues previously
Fig. 10. Metformin improved the performance of mitochondrial functions in the hNSCs
treated with AGEs. hNSCs were treated with AGEs (0.5 mg/ml) for 24 h, then treated
with the indicated reagents (1 mM metformin or 10 μM Compound C) for another 48 h.
(A) Maximal respiratory rate obtained from the indicated treatment were evaluated by
the FCCP assay. (B) COX activity was assayed with the cytochrome c Oxidase Assay Kit.
(C) hNSCs were collected to determine the level of mitochondrial membrane potential
using JC-1 dye. All reactions were run in triplicate from each independent experiment.
Values are expressed as the mean ± SEM values from three independent experiments.
a Specific comparison to the indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).
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reported that AGEs decrease mitochondrial activity and lead to energy
depletion [63]. Since AMPK is critical to mitochondrial stabilization
[69,70], a decrease in the available AMPK in the hNSCs with AGEs likely
contributes to further damage of these mitochondrial functions. Aber-
rant mitochondrial bioenergetics in DM suggest that abnormal AMPK/
PGC1α signaling in neuronal mitochondrial function may lead to dia-
betic neuropathy [71]. Moreover, Choi and colleagues (2014) showed
that PGC1α regulated the mitochondrial degeneration in peripheral
neurons in diabetic mice [72]. The possible connection between
AMPK, PGC1α and mitochondrial signaling in the hNSCs with AGEs
has not been studied extensively. In the present study, activation of
AMPK, and subsequently mitochondrial function, was correlated with
stimulation of the PGC1α pathway and up-regulation of mitochondrial
genes.

Several papers have suggested that alterations in the function of
the mitochondria and neuroprotective effects of AMPK are involved
in both neurodegenerative and metabolic diseases [30,73]. In the
present study, there is clear evidence that profound mitochondrial
impairment is an important event in AGE-mediated toxicity in
hNSCs. This is also consistent with another report on the beneficial
effects of metformin on mitochondrial biogenesis [74]. It has been
explained that AMPK stimulation by metformin, through PGC1α,
stimulates mitochondrial biogenesis. Moreover, activation of AMPK
was strongly correlated with upregulation of survival gene (PPARγ,
Bcl-2 and CREB) mRNA expression [58–62]. The neuroprotive effects
of metformin were effectively blocked by Compound C, demonstrating
that the action of metformin in survival signaling was mediated by
the AMPK pathway.

To better understand the profile of metformin between several sig-
nal pathways in neuroprotection, we assayed genes and proteins
whose expressions or activities are either directly or indirectly affected
by the AMPK pathway. It is different that AMPK can act through various
roles of several cell type specific functions (e.g., mitochondrial biogene-
sis, cellular synthetic function, anti-inflammation, anti-oxidative stress,
cell growth and proliferation) andmolecularmechanisms (e.g., integra-
tion of proper effects via AMPK–PPARγ, AMPK–PGC1α, AMPK–PFK,
AMPK–FOXO, and AMPK–mTOR signaling cascades) [30,38,52,75,76].
Nevertheless, our identification of the AMPK and its downstream
genes will help to explain the mechanisms by which neuroprotective
actions are regulated in response to survivability and mitochondrial
function in the hNSCs with AGEs. Furthermore, our discovery that the
AMPK converges with its downstream gene pathway at several actions,
associated with the reciprocal effects of metformin and Compound C on
AMPK activity and expression, implies that a mediatory relationship
role and precise mechanisms will require further investigation in dia-
betic central neuropathy.

In the study, we showed that metformin activates AMPK to rescue
the AGE-mediated neurotoxic effects in hNSCs. Our study clarifies
AMPK in hNSCs as a critical target of AGE-mediated neurodegenerative
pathological effects, and shows that these effects can be rescued by up-
regulating AMPK expression and activity. This suggests that AMPK is a
potential therapeutic drug target worthy of further assessment in dia-
betic and other neurodegenerative diseases among patients affected
by these diseases.
Fig. 11.Metformin enhanced the expression of neuroprotective genes in thehNSCs treated
with AGEs. hNSCs were treated with AGEs (0.5 mg/ml) for 24 h, then treated with the in-
dicated reagents (1 mMmetformin or 10 μM Compound C) for another 48 h. The PPARγ
(A), Bcl-2 (B) and CREB (C) transcripts in the indicated hNSCs were analyzed using the
Q-PCR technique. RNA of the indicated hNSCs was collected and reverse- transcribed
into cDNA. Q-PCR technique of the indicated gene was performed and normalized to
that of GAPDH. All reactions were run in triplicate from each independent experiment.
Values A, B and C are expressed as a percentage of the indicated transcript in CON and
are presented as the mean ± SEM values from three independent experiments. a Specific
comparison to the indicated hNSCs with AGEs (p b 0.001; one-way ANOVA).
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